
Fermi National Accelerator Laboratory 
FERMILAB-Pub-89/83-A 
March 1989 

SOLITOSYNTHESIS: COSMOLOGICAL EVOLUTION 

OF NON-TOPOLOGICAL SOLITONS 

Kim Griest and Edward W. Kolb 

NASA/Fern&b Astrophysics Center 
Fermi National Accelerator Laboratory 

Batavia, Illinois 6051 O-0500 

and 

Astronomy and Astrophysics Center 
Enrico Fermi Institute 
University of Chicago 
5640 South Ellis Ave. 

Chicago, Illinois 60637 

ABSTRACT 

We consider the thermal creation, fusion, evaporation and destruction 
of non-topological solitons (NTS) after a phase transition in the early 
universe. By defining and following NTS statistical equilibrium and de- 
partures from it, we show that depending on particle physics parameters 
one of three possible scenarios occurs. If reaction rates are high enough, 
a period of equilibrium occurs and relic abundances are determined by 
the Yreeze-out” temperature. We show that equilibrium first drives most 
NTS’s into their constituents (free 4 particles) and then causes rapid fu- 
sion into large NTS’s. If freeze-out occurs during the first phase, the NTS’s 
are almost entirely destroyed, while if it occurs during the second phase, 
solitosynthesis occurs and NTS’s may be cosmically relevant. For slow 
reaction rates the NTS’s are “born frozen out” and have the abundance 
determined by the phase transition. We develop analytic approximations 
for determining the abundances and test them by numerically integrating 
a reaction network in an expanding universe. Unfortunately, for most of 
the parameter space considered, solito-destruction/evaporation occurs. 
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I. INTRODUCTION 

Non-topological solitons (NTS’ s are classically stable field configurations which ) 

have been studied by many groups in recent years.’ They exist in a variety of field 

theories, but most simply one considers a complex scalar field 4 carrying a conserved 

charge coupled to a neutral scalar in such a way to allow regions of false vacuum 

where the ~+3 is massless and true vacuum where 4 has a finite mass. NTS solutions 

occur when some number Q of the 4’s are trapped in a region of false vacuum and 

are unable to escape because their energy is lower than Qm+, the rest energy of Q 

free q5 particles. 

If they exist, non-topological solitons are interesting objects; they could have 

masses ranging from below a proton mass to above a galactic mass, with properties 

quite different from ordinary matter. One is lead to ask whether there is any mech- 

anism for actually forming this kind of coherent state. One possibility, suggested by 

Frieman, Gelmini, Gleiser and Kolb’ (FGGK), is that during a phase transition in the 

early Universe when regions of false and true vacuum co-exist, a certain number of .+5’s 

could be trapped in the false vacuum regions and as these regions shrank they could 

become NTS’s, perhaps surviving until today. FGGK estimated the relic abundance 

of NTS’s, and under several assumptions found that Rnrs N 1 was possible. (0~~s 

is the ratio of NTS density to the critical density.) However, FGGK did not consider 

the actual fate of NTS’s after the phase transition. Several possibilities exist; they 

could disassociate or evaporate into free 4 particles, they could absorb free 4’5, fuse 

and become larger, or they could be created thermally by the fusion of free 4’s. The 

object of this paper is to study these mechanisms and the resulting relic abundance 

of NTS’s. 

In many respects the problem of thermal creation and destruction of NTS’s in 

the early Universe is similar to big-bang nucleosynthesis. There, light elements such 

as helium, deuterium, and lithium are synthesised out of protons and neutrons at a 

temperature of around 1 MeV. Borrowing ideas from big-bang nucleosynthesis we will 

take two general and complementary approaches, 1) solving a network of reactions 

involving the annihilation and fusion of a system of free &s and NTS’s in an expanding 

Universe, and 2) analytically understanding the results of the network integration by 

defining and following NTS statistical equilibrium and departures from it. 



By NTS statistical equilibrium.(NTSSE) we refer to a state where all reactions 

involving creation and destruction of NTS’s are proceeding faster than the expansion 

rate of the Universe, and the number densities of all species are determined by their 

binding energies and the entropy of the Universe. If NTSSE ever exists, knowledge 

of the abundance of NTS’s created during a phase transition is lost and therefore 

irrelevant. At high enough temperatures and densities we expect NTSSE to obtain, 

but as the temperature drops, the number densities eventually fall so low that reaction 

rates for processes which establish NTSSE become less than the expansion rate and 

the relative abundances of NTS’s “freeze out.” We denote the temperature at which 

this happens as TF, the freeze-out temperature. Of course, NTS’s can only exist 

after the phase transition finishes, so another important temperature is the Ginzburg 

temperature, TG, after which false vacuum bubbles are unlikely to spontaneously flip 

into the true vacuum state. If To > TF we expect to have a period of statistical 

equilibrium, while if TF > TO we expect the relic abundances to be more or less 

determined by the phase transition as discussed by FGGK. Finally, we note that 

for low enough temperature NTSSE drives all free 4 particles into NTS’s. This is in 

marked contrast with FGGK’s phase transition where for a relic density of NTS’s near 

critical density the relic density of free 4’s was orders of magnitude larger. We solve 

for the temperature, TD, at which the density of NTS’s begin to dominate the density 

of free &s and show that if TD > TF we truly have solitosynthesis, the creation of 

significant numbers of large NTS’s by the fusion of free C# particles. For the opposite 

case, TF > TD, we find that almost all NTS’s disassociate/evaporate and it is unlikely 

that NTS’s survive in significant numbers. 

We wilI illustrate these various possibilities using the Lagrangian and phase tran- 

sition model of FGGK, and check the simple conclusions described above by running a 

network of reactions. We find good agreement between the network and the analytical 

approximation for most of the range of parameters we consider. 

The plan of this paper is as follows: In Section II we describe the Lagrangian, 

review some necessary aspects of the NTS solution, and review the phase transition 

scenario of FGGK. In Section III we define and derive the formulas for NTS statistical 

equilibrium. We then develop the important features of NTSSE and find an approx- 

imate formula for TD. In Section IV we list the reactions which go into maintaining 

NTSSE, write down the network equations and solve them numerically for a trun- 
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cated system. We also find an approximate solution of the freeze-out temperature 

TF and compare this with the numerical results. In Section V we present our results, 

describing conditions under which we have solitosynthesis and conditions under which 

we have solito-destruction. Section VI sums up the paper. 

II. REVIEW OF NON-TOPOLOGICAL 

SOLITONS AND SOLITOGENESIS 

We will use throughout the model and conventions of Frieman, Gelmini, Gleiser 

and Kolb: (FGGK)r. More details concerning non-topological soliton solutions in 

general can be found in Ref. 1. The Lagrangian we consider is 

1: = lt’,~l’ + ;(B,o)’ - ;(u’ - cc,‘)’ - hl#(c - coo)’ - +&r - ~i,o)~ - A, (1) 

where 4 is a complex scalar field and Q is a real scalar field. The field +4 has a 

conserved Noether charge Q, a mass of zero at the local minimum e = ec, and a mass 

m$ = h(u- - ~0)~ at the true minimum cr = Q-. 

By introducing a spherically-symmetric trial solution of the equations of motion 

derived fIom Eq. (l), and minimizing the resultant energy with respect to the NTS 

radius, one can find the mass (energy) of an NTS of charge Q: MQ = 4sfiQ3/‘A’l’ 13, 

where A is adjusted so that the value of the potential is zero at the true minimum. 

We define the binding energy of an NTS as the difference in mass between the NTS 

of charge Q, and Q massive 4 particles: 

B&em+-MO. (2) 

We note that B > 0 (implying that the NTS is classically stable) occurs as long as 

Q>Qminr where Q,,,b, = 1231Ah-‘(e- - es)-‘. If Q < Qh the binding energy is 

negative and at zero temperature the NTS presumably flies apart into free 4 particles. 

For simplicity, we will consider only the value ,& = 0.15Xt used in FGGK, in 

which case the model is described by the parameters X1, QG, and cro alone. In this 

case we have A = 0.6Xluo4, h = 4.24(A1/Q~)‘/2, MO = 5.15c7&“‘Q3/‘, m+ = 

5.15uoXr”‘/Qti1”, and the NTS radius Ro = 0.8(Q/&)*/‘/os. 

In considering the development of the phase transition, FGGK define a critical 

temperature, Tc x 2~70, after which the Universe divides up into domains of true 
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and false vacuum separated by domain walls. Because the potential energy density 

of the false vacuum is higher, regions of false vacuum soon shrink, and in this scheme 

the regions of false vacuum which contain a net charge greater than Qk eventually 

form non-topological solitons. However, not all regions of false vacuum remain false 

vacuum. Thermal fluctuations of the o field can be large below To and regions of 

false vacuum can become true vacuum and vice versa. These fluctuations freeze-out 

at the Ginzburg temperature, TG, which FGGK estimate as To = 1.30o/A~~‘~. They 

estimate the relic density of NTS’s as the density of regions (at T = Tc) which have 

charge greater than Qh. Defining the number density of free &s as ng, the number 

density of free 4’s as +i4 and the C$ asymmetry, ~4 = (9 - ii+)/n,, their estimate of 

the NTS relic number density is 

s” exp (-Q&1s,2q4), 

where n., = 2C(3)T3/rz, is the photon number density and is related to the entropy 

density. We see from Eq. (3) that NTS’s become exponentially rare as Qk,, increases, 

and that in this scheme almost all NTS have charge Qmin; those with Q > QA,, are 

suppressed, and of course there are none with Q < Q,,,tn. Equation (3) must break 

down as 74 + 0 since the charge in a small region due to Poisson fluctuations will 

then be larger than the charge given by the asymmetry, but we will ignore this here.s 

The corresponding density of free 4’s is roughly 

la4 - ii4 
“lo l- 

[ 
exp(-T,i,) 

n-f 
3/l ’ 

*min 1 

where rmin is the factor in the exponential in Eq. (3). Since r,i, must be greater 

than one,l as long as Qh > 1 the free 4 density dominates the NTS density. There 

is, therefore, a problem with having a closure density of NTS’s unless the free rj 

particles (which are massive) can annihilate, or are allowed to decay and the 4’s 

inside the NTS’s (which are massless) are not. Even in this case, however, the &s 

inside the NTS can “leak out” quantum mechanically and decay. The calculation of 

NTS decay and the subsequent restrictions on solitogenesis are discussed in Ref. (4) 

and will not be considered further here. This concludes our review of solitogenesis, 

but the interested reader is referred to Refs. (1,2) for more details. 
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III. NTS STATISTICAL EQUILIBRIUM (NTSSE) 

If the system of free 4 particles, free 6 particles, and NTS’s is in statistical equilib- 

rium, the number density of each species is determined by its binding energy and the 

temperature and entropy of the system. In kinetic equilibrium the number densities 

of NTS’s of charge Q, and of free 4’s and $6 are given by 

w = &TM: exphIT)K4Mq/T) 

n4 = ~Tm~exp(~4lT)Ka(m4lT) 

ii4 = &Tms e4%lT)K4m4/T), (5) 

where T is the temperature, the p’s are chemical potentials, and K2 is a modified 

Bessel function of the second kind and second order. We define statistical equilibrium 

to consist of kinetic equilibrium, defined above, plus chemical equilibrium which, if 

present, means reactions proceed fast enough to ensure relations among the chemical 

potentials. For example, in chemical equilibrium, the reaction d+~$ +-+ rtu proceeds 

fast enough to ensure p4 + & = 0, and chemical equilibrium of reactions such as 

Qc# +-+ ‘Pq + X, where X is some state with Q = 0 and @q is an NTS of charge 

Q, implies Qp4 = pq. Other reactions imply pq = -pq. These relations allow us 

to specify the system in terms of known binding energies, the temperature, and one 

chemical potential p zz ~4. 

In order to find the number densities we must find p, which may be done using 

charge conservation. The total charge in a comoving volume, R3, will be conserved; 

Qror = [7~4-ii4+&~~,, Q(nq -%q)]P, where Qmu is the largest charge NTS un- 

der consideration and in principle is infinity. Since the photon density is proportional 

to the entropy and scales as R3 we can define the total charge asymmetry, 

PP.. 
7) = n-1 -7 n4--4+ C Q(w--iiq) 

4=&i. 

and remark that 7) is constant as long as entropy is conserved. The value of 7 is a free 

parameter and can range from zero (equal numbers of 4’s and 4’s) to 10-s (roughly 

the asymmetry of the baryons) to around l/2 (C/J s as numerous as photons and very 

few J’s). 
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For most of our work we will use a non-relativisticexpansion of Kz(z) z e-f(x/2z)‘/z, 

although this is not necessary. Taking this limit, we find the number fractions 

Y; = ni/7171~ in statistical equilibrium to be 

y2 = (clvp-q ( !$s!)“’ ( $)3’q-1”2 (Y~)qexdBqlT) 

yges = (clrl)-l (~)3'zu;p[(~ -m4)lTl 

y: = Y~exp(--2dT), 

where cl = C(3)* z 3.636, and 

Bq=m4Q-Mqz ;z;;;: [I - (%)“‘I TG 

(7) 

is the binding energy of an NTS of charge Q. The quantity Yg is the same as YG 

with Y4 replaced by Y4. The charge conservation condition becomes 

Qm.. 
YT-yT+ c Q(Y;-YT)=l, 

411. 
(9) 

which, after specifying r] and T, can be solved for /L and then all number densities 

can be found. 

In Fig. 1 we display the equilibrium number fractions of #‘s 4’6, and NTS’s for a 

system containing NTS’s from Qh = 4 to Qmu = 5 and their anti-NTS’S. We set 

X1 = 1, ~7 = .Ol, and the temperature is divided by Tc so that crs scales out. Figure 2a 

shows the total fraction in NTS’s for the same system but several values of 7. Fig. 2b 

shows the effect of varying the size of the system, parameterized by Qmu, and Fig. 2c 

shows the NTSSE values of JL for the same parameters values as Fig. 2a. These plots 

show similarities with the corresponding plots of light element abundances during 

nucleosynthesis. At a given temperature, typically one isotope (charge) is favored, 

and as the temperature drops, species with different binding energies take over. Figs. 1 

and 2 can be understood qualitatively from the charge conservation equation and from 

Eq. (7). Equation (9) can be approximated as YT[l- e-‘dT + (qTYT)q-leB/T] = 1, 

where the first term is the contribution from YT, the second from YT, and the third 

is the order of magnitude contribution from Yxrs. 
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Consider a relatively small value of 71. Then at T = TG, ~1 (Fig. 2c) is small, 

G x YT > 1 (just about cancelling each other) and YNTS is smaller than either. 

As the temperature drops, YT 0: exp[(p - m4)/T] drops exponentially (p < m+), 

as does FT rz Y4q. The exp(B/T) t erm increases, but the combination of the Tq-’ 

and (YT)o--I dominate at first and so Yxrs drops also. AS the temperature continues 

to drop, ‘I approaches 9, and Yi approaches 1, after which time YT levels out 

and YT drops exponentially. (At this point YNTS is insignificant, so YT cannot drop 

below unity and still satisfy the charge equation.) Since Yy is no longer dropping, 

the exponential exp(B/T) eventually overpowers the T4-l factor and Yxrs begins to 

increase exponentially, (at this point Y, is insignificant) still having little effect until 

it approaches unity. When YNTS gets close to unity, (YT)q-l must drop to balance 

the exp(B/T) factor, and so YT drops away and we are left with Yxrs 5 1 and 

negligible amounts of anything else. For larger asymmetry the same evolution occurs, 

except that the drop in Yxrs is not as deep and the final rise in Yxrs occurs sooner. 

The temperature at which Y~rs starts to dominate (defined as To in the introduc- 

tion) is important in understanding the the evolution of the system, and can be fairly 

well approximated analytically. Since the binding energy of the highest charge NTS is 

most important, in a system with highest allowed charge Qmu, the charge conserva- 

tion equation can be approximated as YT-YT+YNTs = 1, where Yxrs N QL,Yq,.,. 

Defining TO as the temperature when Yxrs = YQes = l/2 and noting that Yi’ (and 

therefore YT) is typically very small at TD, we can solve for the temperature 

TD(Q-) = & 1% 
TG (Q-x - 1) ln (4A18’sT~‘z/~T$z) - In [(Q~)34-.=/S(Qmu)16/S] 

. (10) 

For the case we considered numerically, X1 = 1, Qk = 4, and Qmu = 5, this becomes 

TD/TG = -.767/[2.08 + 4inq + 6h(TD/TG)], w c is in good agreement with the hi h 

numerical results of Fig. 2. A plot of our approximate values of TD for various values 

of 11 is shown in Fig. 3. 

If we are interested in an infinite system, we note that as Qmu -+ co, 

TD(==‘) = 4Ar3f4QL’,/’ 

To ln [4Als’sT;‘1/(qT;‘“Q~)] ’ 
(11) 

For the values of parameters used in Fig. 2 this gives TD/TG rz .4; roughly a factor of 

twenty higher than the Qmu = 5 case and a factor of two higher than the Qmu = 40 
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case. In general TD(Q t 1) > TD(Q) for all Q, implying that the highest charge 

NTS allowed wants to take up all the free 4’s. This contrasts with nuclear statistical 

equilibrium where, for example, ‘He dominates before “C. The difference lies in the 

slightly different pattern of binding energies in the nuclear and soliton cases. 

In conclusion, we see that if statistical equilibrium is maintained until TD we 

expect all &s to be absorbed into NTS’s, and in particular into the largest NTS 

possible. If NTSSE continued, eventually all &s inside the horizon would be contained 

in one large NTS. In reality, the reactions which maintain NTSSE freeze-out, and the 

actual distribution of NTS’s depends upon how many “reaction times” exist between 

TD and TF, and whether in fact, TD > TF at all. We now turn to consider departure 

from statistical equilibrium and freeze-out. 

IV. NTS NETWORK AND FREEZE-OUT 

The statistical equilibrium described in the last section is maintained at the micro- 

physical level by the annihilation, creation, evaporation, and fusion of NTS’s and 4 

particles. So long as these reactions proceed much faster than the expansion rate of 

the Universe, equilibrium can be maintained. The reaction rates are determined by 

cross sections and number densities, and in trying to decide whether or not equilibrium 

exists at a given temperature, one must specify these. If we consider only positive 

charge NTS’s, a set of possible reactions is 

4t6 H a+o 

%,t6 - **-,. + ~ - t$lk+--:‘$+” It’, 
I. lh (12) 

*q&+1 t 4 - ipq,,. t x I; 
etc., 

where @q-,,, etc. indicates a NTS with charge Qh, and X stands for anything 

else (e.g., 7, e+e-, gq). This network would actually extend to @(Qh $ co), but in 

any numerical integration we must truncate it. We find that many essential features 

are present in even this radically truncated system. In addition to the processes of 

Eq. (12), there will be processes such as Gpo,r. + +o,i, u @(2Qk) + X, which we 

will leave out since they are beyond the maximum charge of our truncated systems. 

Processes of this type would become important if equilibrium existed long after TD. 
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One might also question whether the reverse of reactions such 8s Eq. (12b) can take 

place and we will discuss later the effect of leaving out this reaction. 

In order to follow the evolution of NTS and free C$ number densities one translates 

the processes in Eq. (12), into a set of coupled Boltsmann equations. For example, 

the number density of free 4 particles evolves according to 

dno = -3Hn+ t (-7. t ?a) + (Qmi,, - l)(rb -a) - (7’ - F.), dt (13) 

where the -3Hn+ is the reduction of n+ due to the expansion of the Universe, the T; 

are the forward reaction rates of Eq. (12i), and the fi are the reverse reaction rates. 

A similar equation can be written for iid, ng, np,,,+r, etc. and these are displayed 

in Appendix A. 

For s. two body process such as Eq. (12a), T, = (c~,,IuI)n&, where (~~1~1) is the 

thermally averaged cross section. Likewise, rs = (cr~l~[)ii,+nq_~~, T. = (u.lul)nq,,,n+, 

ad Td = (~d~~~)~Q,,.+l~+ For many-body reactions, the rate is also a matrix element 

averaged over phase space and we can still write Fs = ((sa)(nm)‘-‘~-‘nx, where 8s is 

no longer, however, a cross section. 

Equations such as (13) can be simplified by noting that in equilibrium (in a 

non-expanding Universe), ri’ - r$s = 0, that is, in equilibrium the forward and 

backward reactions cance1.s Using this detailed balance we have relations such as 

(Q.bl@,._,~~ = wl)~~~*,+1~;ip, where the “eq” superscript indicates the NTSSE 

abundance. This allows us to replace (8Clvl) in Eq. (13), and pairs such as r. - f; can 

be written 

7, - Fc = (UCIIVI) nq,,,n+ - 
n’qp,,.n?nQ,i.+l 1 sL.+1 ’ 

(14) 

where we have assumed that the X remains in equilibrium throughout the time of 

interest. We can simplify Eq. (13) further by changing variables0 from 1Zi to x = 

n;/(n,r~) and from time to + = T/Tc. Then using detailed balance on all reactions, 

Eq. (13) becomes 

a - = q -(a.lvl)(Y+Y& - YpT) 
dx 1 

t(ObIVI)(Q,, - l)(Y,& - y;YTY+ P&-l/(y7)4&-1) 

-+&l)(Y,yQ - y,4y;yQ+l/y&)], (15) 
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where 

CC- 3&)Tcmsr 

r”=&ii 
n. -O.O1467Tcm+, (16) 

rn$ is the Planck mass, and we took the number of degrees of freedom, 9. z 100. 

There are similar equations for Y+, Yq, etc. and these are displayed in Appendix A. 

Next we need to consider the cross sections appearing in the equations. For the 

.$+,j + atuprocess we can use theinteraction contained in the Lagrangian, Eq. (l), 

L.,, - 1.06ass~Irs $ hl~,+l%~ (17) 

where z is the Q field shifted to the true minimum of the potential. Using this we 

find’ at tree level 

(18) 

For processes such as 4 t @Qua. + @cJ~,,+~ we are at a loss to calculate the cross 

section, so as a rough approximation, we will set (~1~1) - KR$, where RQ is the 

radius of the NTS taking place in the process. Thus we have (eb]ul) N (o.]v]) N 

2Q~“s/(X1”sor,s ) and (U&l) - 2~~/(&1’*o~z). Note that all the cross 

sections scale like ooez. 

The last step before integrating the coupled set of ODE’s is to specify the initial 

conditions. We will start at TG in NTSSE, although it would probably be more correct 

to start with the distribution of Yn~s [Eq. (3)] d erived from the phase transition. 

However, the equations are extremely stiff and we either have a period of statistical 

equilibrium after Tc, in which case YNT~ immediately evolves to Y{&, or we do not 

have a period of equilibrium, in which case the reactions do nothing and we know 

that we are left with the initial Y~rs produced in the phase transition. 

Fig. 4 shows an example of an integration of a network consisting of fls, @s, and 

NTS’s of charge Qe = 4 through Qmu = 5. Values of A1 = 1, r) = 10-s and co = lo3 

TeV (4a) or os = 7 x 10’ TeV (4b), were used. Note in Fig. 4a that all abundances 

trace their NTSSE values (shown in Fig. I) until around T/Tc - 0.1, when YNT~ 

(the sum of the charge four and five NTS abundances) “freezes out” and becomes 

constant. Y+ and Y+ follow NTSSE for a good while longer in Fig. 4a, but with the 

smaller cross section (CC 00~~) of Fig. 4b they too freeze-out and become constant 

by TITG - .02. This is the generic picture. Abundances follow their NTSSE values 
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until freeze-out, which is determined by the cross sections, after which they become 

constant. 

Since we are potentially interested in systems with large Qmu, and since we cannot 

numerically integrate such systemss, we would like an analytic approximation for TF 

just as we have for To. Toward this end we first note that 4 and 4 typically stay 

in equilibrium longer than NTS’s so that during freeze-out of the NTS’s we can 

approximate Y+ and Y+ by their NTSSE values. The key reaction is then Eq. (12b), 

which is our source of thermal NTS’s, and the equivalent of Eq. (15) for YQ can be 

approximated as 
s 
dx 

= -C+blVl)~~(‘g(yQ - YT). (19) 

Defining A = Yo - Yc;‘, Eq. (19) can be rewritten as dA/d+ = -c?7(u&])Y~A - 

dyT/dx, and as long as the departure from equilibrium is small we can set dA/dz zz 0 

and solve for A: 

(20) 

Defining freeze-out as A = 1.5YT [see Ref. (S)] and using Eq. (7) for Yc;’ and YT, 

we find 

TF bL/Tc) + 4(Xrs”/Qdnr”) 

K = In [(.12~~1’sQ,i,1’s~~smpl/0~) (-+F - Q/L/T= +4A13/‘Q/Qtim’/’ - &/Tc)] ’ 

(21) 
where ZF = TF/TG. For X1 = 1 and Q = Qb = 4, this becomes 

2, (Pm) + 2.8 

TG In [( .14# T7$&,)/(-jZF - ~/L/G + 11.3) ’ 

where p must be found from the NTSSE calculation. A plot of p for several8 values 

of q is given in Fig. 2c. 

The approximation, Eq. (21), agrees quite well with the results of the numerical 

integration (typically within lo%-20%) for small 7, but becomes worse as n becomes 

large (n 2 0.1). For example, with large 7, A1 = 1 and Qmip = 4 the network gives 

TF/TG 2 0.3 almost independent of the value of 00, while the approximation predicts 

smaller values which vary with ~0, A plot of our approximate TF for several values 

of ~0 and ~7 is given in Fig. 5. 
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V. RESULTS 

We are now in position to try to decide quantitatively the relic abundance of NTS’s 

as a function of our free parameters 7, us, Xr, and Qh. We have discovered that 

there are really just three different possibilities, depending upon the relative order of 

three important events: the end of the phase transition (Tc), the dominance of the 

NTS’s (TD), and NTS freeze-out (TF). 

If TF > Tc then the NTS’s are born frozen out, that is they never reach NTSSE. 

NTS’s are neither thermally created, nor are they destroyed, and one is left today 

with roughly the same spectra of NTS’s as was created by the phase transition. This 

was the case tacitly considered by FGGK, and so one expects to have &rs < R+., 

and with their assumptions, it is therefore difficult to have a significant density of 

NTS’s extant today. In terms of the free parameters, we find that if os is greater than 

around 10’s TeV, then TF > TG, where 00 is roughly the mass of the free 4 and also 

sets the scale for the 4 $ NTS cross section. Keep in mind that the Planck scale is 

1.2 x 10’s TeV. For large asymmetry TF/TG is larger, but even the largest asymmetry 

we considered (7 = 0.5) does not allow TF > Tc for 00 < 10’s TeV. 

If Tc > TF then, at least for a while after the phase transition, we expect to have 

statistical equilibrium. In this case the number of NTS’s created during the phase 

transition is irrelevant, the final density being determined purely by the temperature 

at which NTSSE ends, along with the asymmetry and NTS binding energies. Typ- 

ically the number fraction of NTS’s is lower than Y+ at Tc, drops exponentially for 

a while, levels off at some very low number fraction, and then rises exponentially 

until it reaches unity, after which time almost all free I$‘S disappear. The relation 

between the temperature of the final rise (TD) and freeze-out (TF) determines the 

NTS relic abundance. If the rise happens before freeze-out (To > TF) then we have 

solitosynthesis. Large numbers of NTS’s of various sizes will survive until today and 

the number of free 4 particles will be small. If freeze-out happens first (TF > TD), the 

number fraction of NTS’s will remain at the very low levels of the NTSSE dip, and 

we have s&ton destruction/evaporation. In this case the number fraction of NTS’s 

is insignificant and only free 4’s and $s remain today. 

The actual values of TF and TD depend upon the parameters of the model: or,, 

XI, Qmin, and the asymmetry, 7. Consistency lo forces Xr to be near 1 and Qdn to be 
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between roughly IO” and 10’. As mentioned, we allow crs to vary up to mPr = 1.2 x 10’s 

TeV, while we consider n between 0 and l/2. 

In general, as Q,,+, increases both TF and TD decrease. But, since TD decreases 

faster, we find that as Qfin increases freeze-out occurs while YNTS is still low and 

s&o-destruction is the result. Therefore to find solitosynthesis we take Q& as 

small as possible. Decreasing Xl also decreases both TF and TD, this time by roughly 

the same amount. Since there is very little range allowed in the choice of Xr we mainly 

consider only X1 = 1. The parameter as has no effect on TD/T~, but as it decreases, 

TF decreases, so for sol&synthesis a low value,of as is desirable. (Cross sections 

are proportional to as-s, and a larger cross section will keep things in equilibrium 

longer.) Taking a very ,low value of os (and corresponding very large cross section) 

does not help much however, because the dependence of TF on os is logarithmic. For 

example, a cross section 10 So times larger than rRa would be needed to have TD > TF 
for Qmu = 40 and n = 10-s. 

The value of the asymmetry is important. For values of n near the baryon asym- 

metry (n N 10-s) we always have TF > TD and cannot have a substantial relic 

abundance of NTS’s. As n increases both TF and TD increase, but TF increases to a 
smaller extent. Therefore the best hope for sol&synthesis is when n is large. 

Finally we must decide what value of Q,,,= to use. Since To(Q + 1) > TD(Q), the 

larger the effective size of the system (Q&, the larger the area of parameter space 

in which solitosynthesis can occur. With the present analysis we have not been able 

definitively to decide the effective size of the system (we cannot numerically integrate 

a very large system), but we will discuss this question in some detail in Appendix 

B. In Fig. 6 we show the regions of parameter space for which each of the three 

scenarios, solitosynthesis, s&to-destruction, and “born frozen-out” takes place. We 

choose favorable (for solitosynthesis) parameter values of Qh = 4 and Xl = 1 and 

plot the crs, n plane. The dot-dash line shows the boundary between s&to-destruction 

and born frozen-out, destruction occuring to the left of the line. The solid lines show 

the boundary between solitosynthesis and s&o-destruction for two values of Qmu 

(Qmu = 9andQ,= 44). Below these lines s&to-destruction/evaporation takes 

place. As discussed in Appendix B, we favor a boundary with a low value of Qmu 

as it agrees with an estimate of the allowed region of solitosynthesis made using a 

different method. The dashed line shows the division of parameter space found by 
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requiring enough time to generate an NTS of charge Qmu via one-body reactions. 

This is a necessary but not sufficient condition for solitosynthesis (See Appendix B). 

Taking the Q,,,= = 9 line as the boundary, we see that even for the favorable case 

of Qb = 4, A1 = 1 and 0s = 1 TeV, we find TO > TF only if n > 0.1. This is 

very near the degenerate limit and while such a value for n is not impossible, it is 

hard to imagine it arising in a natural way. Therefore, we conclude that for most all 

values of our parameters we will not have substantial numbers of NTS’s extant today. 

Typically we either are left with the distribution created by the phase transition or we 

destroy even these, although there is a window of parameter space for which NTS’s 

are naturally produced and could contribute, for example, Curs - 1. 

Now we briefly consider what happens if processes such as the reverse of Eq. (12b), 

(QA - 1)d + a~,*. + 6 are left out of the network. If NTS’s can only be destroyed 

and not thermally created, the “equilibrium” state has Yn~s = 0. Starting from an 

NTS distribution after a phase transition, or from actual statistical equilibrium one 

then finds the “evaporation rate” of NTS’s by integrating such a network. The results 

of this integration are shown in Fig. 7. Comparing Fig. 7 to Fig. 4, we see that Ynrs 

does drop very quickly to zero (and never rises again), while when thermal creation 

processes are allowed, the drop is more controlled and temporary. In this type of 

scenario, the only way to have any relic NTS’s is to have TF > TG, that is, to have 

the NTS’s born frozen out. 

Finally, we mention that while the results presented above are in one sense very 

dependent upon the particular NTS model we used, in another sense they are quite 

model independent. The important temperature scale TD depends primarily on the 

NTS binding energy and asymmetry; the freeze-out temperature depends on these as 

well as the cross sections. So while for different NTS models the precise regions of 

parameter space which give rise to solitosynthesis and sol&-destruction will differ, 

we still expect the answers to be given by Eqs. (10) and (21), and to be qualitatively 

the same. 

VI. CONCLUSIONS 

In conclusion, we see that for the model of FGGK there are three generic outcomes, 
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depending on the values of the parameters. If TF > T,, NTS’s are born frozen out 

and Yn~s < Y+ is determined by the phase transition. If Tc > TF, a period of 

statistical equilibrium occurs, which erases all knowledge of NTS’s formed during 

the phase transition. If To > TF, which occurs only for fairly extreme values of 

the parameters, YNT~ * 1 and solitosynthesis gives rise to large, perhaps cosmically 

significant abundances of NTS’s. If TF > TD, then all NTS’s formed during the phase 

transition are destroyed, YNTS < Yd, and the relic abundance of NTS’s is probably 

insignificant. 
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APPENDIX A 

In this appendix we list the complete set of coupled Boltsmann equations used in 

running the solitosynthesis network. The symbols were all defined in Sections III and 

IV. 

d% _ - - nl -,(Y,YQ - Y+-Y;Yq+l/Y&) dx [ 
tQ(Q - l)(%?&q - y~Y4”(Y+)+-‘/(Y~)-) 

-U.&Y+ - yYT)] 

!%- 
dx - q 

[ 
-Ub(F&Q - ~~Y4”f(y&‘/(y~)Q-1 

-ua(YJ-+ - YTy) 

-fld(i$yQ+l - ~~Y;+lY~/Y~) 1 
-flc(Y+YQ - Y;qY4cpYq+1/Yqe9+l) 
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--ab(~&Q - ~~~p"'(y~)Q-'/(y~q)*-l) 

tcd(%yQ+l - ~~Y~C’+,YQ/Y~) 
I 

dYq+l 
- = ctl dx Oc(YdYQ - Y~Y;YQll/Y&) 

-cd(&yQ+l - ~~y&yQ/y~)j, 

where ui stands for (a;lvj) and Q = Qmin throughout. 

(23) 

APPENDIX B 

The discussion in the main body of the text which decided the boundary between 

solitosynthesis and s&to-destruction/evaporation was very simplistic, but we feel 

probably adequate. In this Appendix we discuss the caveats and our reservations in 

more detail. 

In comparing To with TF the question arises as to what size system (effective Q,,,-) 

is relevant. It was seen that T&Q + 1) > TD(Q), for all Q and therefore the larger 

Q,, the larger the region of parameter space which would allow solitosynthesis. This 

is basically a bottle-neck question, and since it is exponentially sensitive is difficult 

to answer with confidence. Consider a temperature between TD(Q~= + 1000) and 

TD(Q~ t 1). NTSSE would drive YNTS to unity in a system of size Q,,,n, $ 1000, 

but force YNTS < 1 in a system of size Qr,,n, + 1. Can the system generate the 

large number of NTS’s needed to reach NTSSE when Yesomi,, Yc’&iX+l, etc. are 

extremely small and since the @Q,,, ‘s are generated by a sequence of reactions such 

as @Qmi. + ‘# + Q4,i,+l? 
One approximate way to answer this question is to consider the number of reac- 

tions such as @Q-,. + 4 -t a~-,,+~ which could have taken place between To and 

To(Q,,). This number, N, must be greater than or equal to Qmu for NTSSE to 

obtain. N is overestimated by N N (uV)R.=q(Qmin,To(Q~~))tD, where tD is the time 

which corresponds to To and n’s( Qkn) is evaluated in a system of maximum charge 

Qmip. (This overestimates N since nymi, would be smaller for a system with a larger 

maximum charge.) Setting N = Qmu and solving for TD(Q,,) one finds the effective 

size (maximum possible charge) of the NTSSE system as a function of the Lagrangian 
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parameters. Qmu = N > Qha is a necessary (but not sufficient) condition for soli- 

tosynthesis. In Fig. 6, we show the line Qmu = Qh (for Qk,, = 4) in the n, crs 

plane (dashed line). Note that it falls between the Qmu = 9 and Qmu = 44 solid 

lines found previously and argues for a small effective Qmu. 

This might have been anticipated. At temperatures where YNT~ < 1, high Q 

NTS’s are very much suppressed compared to NTS’s of charge QA, so one has an 

effective maximum charge of Q,,,J,, (or Qh t 6, where E is small). If the system freezes 

out before Tn(Q, = Qk + e), then there was never a time when large numbers of 

NTS’s of charge Qh, Qhn + 1, etc. existed, and so no way to generate large numbers 

of Qmu charge NTS’s even if NTSSE would have liked it. 

Another over-simplification of the discussion in the main body of the text was the 

use of TF, the freeze-out temperature of reaction Eq. (12b), (Q&-1)4 H QQ,,.+$ 

If any of the reactions, QQ,,.+Q-~ $ 4 -+ @Q,~,+Q, freeze out then the system will 

stop building. Defining a freeze-out temperature T$ (for example, for the reaction 

above) and using the same method as in Sec. IV. we find 

TFQ (BQ - BQ-,)/To 
x = ln [(.057c~(Q - l)i/s(~$)r/sm~/os) (-$r$ $ Q(-p/TG + 4Xls”Q~~‘) - B4/TG)] ’ 

where z$ = T,$Q/To and 

CQ = 

We find that T$ > T$” for all Q, so the higher charge reactions freeze-out first and 

are therefore the only ones which need be considered. However, in comparing T$ 

with the previously defined TF, we find TF slightly larger or equal to Tr? for moderate 

values of Q. Since Tjp-‘., Tp+‘, etc. freeze-out later, the use of TF, as was done 

in the body of the text, seems adequate. Other limitations of our analysis include 

neglect of the NTS surface energy (clearly not well founded with the small Qmin’s 

considered here) and the use of the zero temperature form of the potential. 

Finally, a potentially serious flaw in our analysis is that the reactions of eq. (12) 

are perhaps not the relevant ones. One might expect many-body reactions such as 

Q,,,& -t @Q-,, + X to exist, as well as @4-i. + I$ + q5 + +Q~,.+~, etc.. If these go 

at appreciable rates large NTS’s could be built much faster and a larger region of 

parameter space might allow solitosynthesis 
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FIGURE CAPTIONS 

1. Abundances as a function of temperature in NTS statistical equilibrium for 

a system consisting of 4, 4, $4, *s, $4, $5 (Q- = 5). Parameter values 

Qh = 4, Xr = 1, and n = .Ol were chosen. Temperatures are divided by 

2’~ so the CT~ dependence scales out. Since charge is conserved the algebraic 

sum of aU the Y’s (which are actually QY’s) is unity. 

2. Abundances of non-topological s&tons in statistical equilibrium for a sys- 

tem with Qh = 4 and Xr = 1. In (a), the total abundance of NTS’s (YNTS) 

is shown for Q- = 5 and several values of the asymmetry (n = 0.5, lo-‘, 

10m5, 10mg). In (b), YNTS is shown for n = lo-’ and several values of the 

system size (Q- = 5,40,200). In (c), the value of the chemical potential, 

g, is shown for Q- = 5 and several values of n. 

3. The L’dominance” temperature, To, after which NTSSE drives YNTS > 4, 

as a function of the effective size of the system Q-, and for several values 

of the asymmetry (7 = .5, lo-‘, lo-‘, lo-‘). 

4. Abundances of NTS’s found by integrating a truncated network of reactions 

in an expanding universe (to be compared with the equilibrium values dis- 

played in Fig. 1). Parameter values Qb = 4, Qmu = 5, X1 = 1, and 

n = 10e2 were chosen. Note that anti-NTS’s are not included. Two values 

of ~0 (lo3 TeV in (a) and 7 x 10’ TeV in (b)) are shown. The larger cross 

section (a ~0~~) in (a) allows equilibrium to maintained to lower temper- 

ature, while in (b) freeze-out is seen for Y+, y#, and YNTS (sum of charge 4 

and 5 NTS abundances). 

5. The “freeze-out” temperature, TF, defined in the text, as a function of go 

for several values of asymmetry (7 = .5, 10m2, 10e5, lo-*). Parameter 

values Qh = 4 and Ar = 1 were chosen and TF is nearly independent of 

the size of the system, Qmu. 

6. Parameter space for solitosynthesis, the ITO, n plane for Qh = 4 and 

Xr = 1. To the right of the dot-dashed line NTS’s are “born frozen-out” 



and equilibrium never obtains. Below the solid (and dashed) lines solito- 

destruction/evaporation occurs, that is, NTSSE erases knowledge of the 

phase transition, but freeze-out occurs when the abundance of NTS’s is 

approximately zero. Above and to the left of the solid (and dashed) lines 

solitosynthesis occurs. Here, large numbers of NTS’s are synthesized possi- 

bly leading to cosmically relevant abundances. Several methods of deciding 

the boundary between solitosynthesis and solito-destruction are displayed 

(see text and appendix B) but the solid line labelled Q- = 9 is probably 

the most relevant. 

7. Pure evaporation, the abundance of NTS’s found by integrating the network 

when “creation” of NTS’s is disallowed. The total abundance of NTS’s 

drops quickly to zero. To be compared with the case when all reactions are 

allowed (dashed line and Fig. 4). 
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